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ABSTRACT

One of the most important insights of modern finance is the diversification of the optimal

portfolio that usually contains all available risky assets. In this paper, we show that corre-

lation ambiguity can generate anti-diversification in the sense that the optimal portfolio has

exactly one risky asset even though there are N > 1 available risky assets. Generally, correla-

tion ambiguity leads to under-diversification in the sense that the optimal portfolio contains

only a portion of the available risky assets. With 100 stocks randomly selected from S&P

500, on average, approximately 20 stocks will be held in the optimal portfolio when the sets

of ambiguous correlations are given by 95% confidence intervals. Our results suggest that

aversion to correlation ambiguity may provide an explanation for the under-diversification

documented in empirical studies.
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Diversification and Correlation Ambiguity

WE STUDY THE PORTFOLIO CHOICE PROBLEM of an agent who is averse to ambi-

guity in correlations. While previous studies focus on the aversion to the expected return

ambiguity, we study the effect of the aversion to correlation ambiguity on portfolio choice.

We find that the aversion to correlation ambiguity may lead to anti-diversification, that is,

there is one sole risky asset in the optimal portfolio. In general, correlation ambiguity gen-

erates under-diversification, in the sense that the optimal portfolio contains a portion of the

available risky assets.

One of the most important insights of modern finance theory is diversification in that the

optimal portfolio should contain all available risky assets. This insight is true for expected

utility theories including the Markowitz’s static portfolio choice theory and the Merton’s

dynamic portfolio choice theory.

In this paper, we show that anti-diversification occurs with correlation ambiguity. If

correlations are sufficiently ambiguous, the agent holds one sole risky asset. Intuitively,

when correlations are totally ambiguous, an optimal portfolio for an agent who is averse to

this ambiguity should be insensitive to correlations. Only portfolios that consist solely of

one asset are insensitive to correlations; the optimal strategy for the agent with ambiguity

aversion is to hold the asset that has the greatest Sharpe ratio. The sufficient and necessary

condition for occurrence of anti-diversification is characterized in this paper.

Generally, when correlations are not completely ambiguous, that is, when correlations

can take values in strict subsets of [−1, 1], we have under-diversification in the sense that

the optimal portfolio does not contain all risky assets. The number of risky assets in the

optimal portfolio can be substantially smaller than the total number of the available risky

assets. For example, given 100 randomly-selected US stocks with ambiguous sets being 95%

confidence intervals of correlation estimations, the optimal portfolio has approximately 20

stocks. As the degree of correlation ambiguity increases, stocks with a lower Sharpe ratio
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will tend to be omitted from the optimal portfolio until the one with the greatest Sharpe

ratio remains. In contrast, without ambiguity aversion all 100 stocks are held under the

mean-variance framework.

Goldman (1979) coined the term Anti-diversification for holding one risky asset. The

researcher shows that, for buy-and-hold strategies, an infinite time horizon leads to anti-

diversification.

Under-diversification is documented in many empirical studies. For example, Campbell

(2006) suggests that the financial portfolios of households contain a few risky assets. Goetz-

mann and Kumar (2008) report that the majority of individual investors hold a single digit

number of assets in a sample data set from 1991-1996. Among many other empirical find-

ings regarding under-diversification from various data sets, we refer to Mitton and Vorkink

(2007), Calvet, et al. (2008), and Ivković, et al. (2008). Our result suggests that correlation

ambiguity may be an explanation of these findings.

There are other explanations of under-diversification. Brennan (1975) finds that the

optimal number of risky assets in a portfolio is small when there are fixed transaction costs.

Liu (2014) proposes a model in which under-diversification may be caused by solvency

requirements in the presence of committed consumption. Roche et al. (2013) suggest that

financial constraints can lead to under-diversification. Boyle, et al. (2012) can produce

under-diversification with ambiguous expected returns.

Jagannathan and Ma (2003) note that covariances (and correlations) are imprecisely

estimated particularly when the number of assets is large. Note that the number of corre-

lations increases in N(N − 1)/2, thus correlations are more difficult to estimate for a large

number of assets. We refer to Engle and Sheppard (2001) and Engle (2002) to estimate a

large number of correlations. Moreover, empirical studies, for example, Longin and Solnik

(2001) and Cappiello et al. (2006) 1, show that correlations are dynamic; therefore, they

are more difficult to estimate than constant correlations in a model.

1 There are many other empirical studies on correlations, for example, Ball and Torous (2000), Ang and
Chen (2002), and Driessen, et al. (2007).
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Uppal and Wang (2003) study dynamic portfolio choice and show that the ambiguity

of the return distribution can cause biased positions relative to the standard mean-variance

portfolio. Guidlin and Liu (2014) examine asset allocation decisions under ambiguity aver-

sion. The researchers find that the ambiguity aversion can generate a strong home bias.

The term under-diversification used in both papers refers to bias in certain assets, whereas,

in our paper, under-diversification means zero holdings of certain risky assets. Goldfarb

and Iyengar (2003) and Tütüncü and Koenig (2004) study the (robust) portfolio choice

problem under uncertain expected return and covariance; however, none of these discuss

anti-diversification or under-diversification.

As in the literature, we use the terms ambiguity (ambiguous) and uncertainty (uncertain)

indifferently. Both terms are different from risk, which has known probability. We refer to

Knight (1921), Ellsberg (1961), Maehout (2004) and Hansen and Sargent (2001) for more

discussion on ambiguity.

The paper is organized as follows. In Section I, we formulate the framework of portfolio

choice with an aversion to correlation ambiguity. In Section II, we present anti-diversification

results for a case of two risky assets. In Section III we study anti-diversification for a general

case of N risky assets. Under-diversification is studied in Section IV. The results regarding

empirical calibration are also reported in this section. Our conclusions are presented in

Section V. Proofs for certain propositions and a technique note are collected in the Appendix.

I. Correlation Ambiguity

In this section, we present the formulation of portfolio choice under correlation ambiguity.

A. Objective Function

We assume that there is a risk-free asset with a constant return rf , and there are N

risky assets with random returns r1, ..., rN . Let µ = (µ1, ..., µN)> denote the expected excess
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return vector of the risky assets, where the convention > denotes the transpose, and let Σ

denote the variance-covariance matrix of the excess returns. Let φn, n = 1, ..., N , denote the

dollar amounts that are invested in asset n and denote the portfolio by φ = (φ1, ..., φN)>.

We consider the following objective

max
φ

µ>φ− A

2
φ>Σφ, (1)

where A is the absolute risk aversion coefficient. This objective function can be justified as

the utility equivalent of an expected utility with normally distributed returns and a constant

absolute risk aversion utility function.

The optimal portfolio without ambiguity of µ and Σ is the solution to the optimization

problem (1) given by

φ∗ =
1

A
Σ−1µ.

Let σn denote the standard deviation of asset n, n = 1, ..., N and let σ be the diagonal

matrix with diagonal entries σ1, ..., σN in order. Let ρ = (ρij)1≤i,j≤N be the correlation

matrix of the excess returns, where ρij = 1 if i = j, and ρij is the correlation of asset i and

asset j if i 6= j. Define s = (s1, ..., sN)>, where sn = µn/σn is the Sharpe ratio of asset n.

Without loss of generality, we assume that Σ is non-singular.

By the change of variable ψ = σφ, the objective problem (1) can be re-written as

max
ψ

s>ψ − A

2
ψ>ρψ. (2)

The optimal solution to (2) is ψ∗ = 1
A
ρ−1s and the optimal portfolio φ∗ is re-represented by

φ∗ = σ−1ψ∗ =
1

A
σ−1ρ−1s.
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The value function is then obtained by substituting the optimal portfolio into (1) and is

given by

V =
1

2A
s>ρ−1s.

Hence the value function depends two sets of parameters: ρ and s. While previous studies

focus on s (mostly on µ), the present paper investigates the role of ρ in portfolio choice when

the parameters are ambiguous. From the above expressions, volatility ambiguity can be

treated the same as expected return ambiguity. However, correlation ambiguity is different

from Shapre ratio ambiguity.

As studied in Gilboa and Schmeidler (1989) or Garlappi, et al. (2007), an agent with

ambiguity aversion takes the following max-min objective, where the minimization reflects

the agent’s aversion to the ambiguity.

J = max
φ

min
ρ
µ>φ− A

2
φ>Σφ.

By applying a version of the minimax theorem (see e.g., Theorem 45.8, Strasser (1985)),

we can simplify the objective as follows.

max
φ

min
ρ
µ>φ− A

2
φ>Σφ = min

ρ
max
φ

µ>φ− A

2
φ>Σφ = min

ρ

1

2A
s>ρ−1s. (3)

If ρ = IN , the N ×N identity matrix, s>ρ−1s is the sum of squared Sharpe ratios. If ρ 6= IN ,

s>ρ−1s is the sum of squared Sharpe ratios of independent risk, as we will show later.

B. Ambiguous Set

We need to specify ambiguous sets in which the minimization in (3) is implemented. It

is standard to use confidence intervals as the ambiguous sets in the case of expected return

ambiguity. We will also use confidence intervals as ambiguity sets of correlations in this
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paper. However, most of our results do not rely on this specification.

We obtain confidence intervals for point estimations of correlations by a standard method

in statistics. Let Rp =
∑n

i=1(Xi−X̄)(Yi−Ȳ )√∑n
i=1(Xi−X̄)2(Yi−Ȳ )2

for a paired sample (X1, Y1), ...., (Xn, Yn), with

sample mean (X̄, Ȳ ). The Fisher transform F (Rp) = 1
2

ln(1+Rp

1−Rp
) is approximately normally

distributed with mean 1
2

ln(1+p
1−p) and variance 1

n−3
, where p is the population correlation.

The confidence bounds are based on the asymptotic normal distribution. These bounds are

accurate for large samples when variables have a multivariate normal distribution.

It is well-known that correlations satisfy constraints |ρij| ≤ 1. When N ≥ 3, there are

additional constraints on {ρij}i<j due to the requirement that ρ must be positive definite.

For example, N = 3, the three pairs of correlation coefficients must satisfy

ρ2
12 + ρ2

13 + ρ2
23 − 2ρ12ρ13ρ23 < 1. (4)

When confidence intervals are sufficiently small, ρij, 1 ≤ i < j ≤ N , inside the confidence

intervals should satisfy the constraints. When confidence intervals are large, only those ρij’s

that satisfy the positive definite constraints are chosen from the intervals. Such {ρij}’s will

be referred to as admissible. One can also specify ambiguous sets of correlations by an

elliptical set or a sphere
∑

i<j |ρij − ρ̂ij|2 < δ, where ρ̂ij are estimations. Our general results

hold true for such a setting. For our theoretical results, one can verify that the optimal ρ

satisfies these constraints. When we solve the optimization problem numerically, we use an

algorithm under which the positive definite constraint is always binding.

Our formulation is based on a mean-variance static portfolio choice framework. Assuming

constant expected returns and variance-covariance matrix, our results also apply to Merton’s

dynamic portfolio choice framework.

Note that when we consider Sharpe ratio ambiguity, the objective is similar to (3) as
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follows.

max
φ

min
s
µ>φ− A

2
φ>Σφ = min

s
max
φ

µ>φ− A

2
φ>Σφ = min

s

1

2A
s>ρ−1s. (5)

The Sharpe ratio ambiguity nests the expected return ambiguity, which has been studied in

the literature extensively. In an Internet appendix, we derive general results on Sharpe ratio

ambiguity, which are extensions of the existing literature. In the remainder of this paper,

we focus on correlation ambiguity.

II. Two Risky Assets

When there are two risky assets (N = 2), the optimal portfolio with aversion to corre-

lation ambiguity can be solved in closed form. This case is also interesting by itself; it is

relevant to the situation if an investor considers inclusion of a new risky asset in his portfolio.

PROPOSITION 1: Assume s1 > s2 ≥ 0. If the correlation is completely ambiguous, that is,

the ambiguous set of the correlation ρ12 is [−1, 1], the agent will solely hold asset 1.

Proof. When N = 2,

s>ρ−1s = s2
1 +

(s2 − ρ12s1)2

(1− ρ2
12)

.

It follows that

min
ρ

1

2A
s>ρ−1s = min

ρ

1

2A

(
s2

1 +
(s2 − ρ12s1)2

(1− ρ2
12)

)
,

where the first term in the bracket is the squared Sharpe ratio of asset 1, the second term

is the squared Sharpe ratio of a portfolio given by (−σ2
σ1
ρ12, 1). Note that asset 1 and the

portfolio are uncorrelated.

The first order condition of the above minimization problem leads to ρ∗12 = s2/s1 ∈ [0, 1],
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given that the range of ρ12 is [−1, 1], and s1 > s2 ≥ 0. Then the optimal portfolio is

φ∗ =
1

A
σ−1(ρ∗)−1s =

1

A
(
s1

σ1

, 0)>. (6)

Note that the second component is exactly zero, and thus we have anti-diversification. �

Intuitively, when the correlation is completely ambiguous, an agent who is ambiguity

averse will hold a portfolio that is insensitive to correlation.2 Such portfolios are portfolios

with only one risky asset. When there are two risky assets, there are two such portfolios.

The one with a higher Sharpe ratio will be chosen.

The above result can be intuitively understood in the following way. Suppose that the

risky asset returns are given by

r1 = rf + µ1 + σ1ε1,

r2 = rf + µ2 + σ2ε2,

where ε1, ε2 are two sources of shocks with correlation ρ12. For a given correlation ρ12, we

can decompose the returns as follows

r1 = rf + µ1 + σ1ε1,

r2 = rf + µ2 + σ2(ρ12ε1 +
√

1− ρ2
12ε̂2), (7)

where ε̂2 is a shock independent of ε1. Both ε1 and ε̂2 are standard normal random variables.

Then the return of asset 2 can be expressed as

r2 = rf + β(µ1 + σ1ε1) + α +
√

1− ρ2
12σ2ε̂2.

2We thank Michael Brennan for pointing this out to us.
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where β = ρ12
σ2
σ1

is the regression (in population) coefficient of return 2 on return 1 and

α = (µ2 − ρ12
σ2
σ1
µ1).

If α = 0, there is no compensation for ε̂2 risk, and return 2 is just return 1 plus a pure

noise. In this case, ε̂2 is similar to an idiosyncratic risk in the market model with r1 as the

market. If α 6= 0, it is the compensation for ε̂2.

The optimal portfolio which solves the optimization problem (1) is given by

φ∗1 = µ1
Aσ2

1
− βφ∗2,

φ∗2 = α
A(1−ρ212)σ2

2
.

(8)

Hence asset 2 will not be held if and only if α = 0, which is equivalent to the condition

ρ12 = s2/s1. Note that without loss of generality, we assume that the two Sharpe ratios are

sorted in descending order s1 > s2 ≥ 0. So 0 ≤ s2/s1 < 1.

Given the above optimal portfolio φ∗ = (φ∗1, φ
∗
2)>, the value function in the optimization

problem (3) is

J = min
ρ
µ>φ∗ − A

2
(φ∗)>Σφ∗ = min

ρ

1

2A
(
µ2

1

σ2
1

+
α2

(1− ρ2
12)σ2

2

) = min
ρ

1

2A
(s2

1 +
(s2 − ρ12s1)2

(1− ρ2
12)

).

(9)

Therefore, the value function is determined by the sum of squared Sharpe ratios of indepen-

dent risks. In the above decomposition, the independent risks are ε1 and ε̂2, with Sharpe

ratios s1 and
√
α2/(1− ρ2

12)σ2
2 =

√
(s2 − ρ12s2)2/(1− ρ2

12) respectively. Such an uncorrelat-

ed/independent decomposition will be exploited again in the case of N risky assets.

Note that the value function is non-monotonic in ρ12. In general, ρ12 = 1 is not the worst

case. In fact, the utility level is unbounded as ρ12 → 1 as long as s2 < s1. When ρ12 = 1,

the two assets are perfectly substitutable as long as risk is concerned, but asset 1 is better

when risk-return tradeoff is taken into account because it has a higher Sharpe ratio. Thus
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the agent views this as an arbitrage opportunity and would take infinite positions (infinite

long position on asset 1 and infinite short position on asset 2).3

Proposition 1 can be extended to the case that the correlation is in a subinterval of

[−1, 1], that is, ρ12 ∈ [ρ
12
, ρ̄12] ⊂ [−1, 1]. For this case, we will see a more general portfolio

choice under correlation ambiguity.

Note that

∂

∂ρ12

(s2
1 +

(s2 − ρ12s1)2

1− ρ2
12

) = 2s2
1

( s2
s1
− ρ12)(−1 + ρ12

s2
s1

)

(1− ρ2
12)2

.

The right hand side is a function of ρ12 and its only root in [−1, 1] is s2/s1. Thus, the function

(s2
1 + (s2−ρ12s1)2

1−ρ212
) decreases when ρ12 is in [−1, s2/s1] and increases in [s2/s1, 1]. From this

property one can determine that ρ∗12 where

ρ∗12 = argminρ12∈[ρ
12
,ρ̄12]

1

2A

(
s2

1 +
(s2 − ρ12s1)2

1− ρ2
12

)

is the correlation coefficient chosen by the ambiguity averse agent as follows:

If s2/s1 is in the range of ambiguity, then ρ∗12 = s2/s1 and only asset 1 will be held. Anti-

diversification occurs. This includes the complete ambiguity of Proposition 1 as a special

case.

If the range of ρ12 is given by ρ̄12 < s2/s1, then ρ∗12 = ρ̄12 and both assets will be held in

long position.

If the range of ρ12 is given by ρ
12
> s2/s1, then ρ∗12 = ρ

12
and both assets will be held.

Asset 1 will be held in long position while asset 2 will be held in short position.

The above analysis is summarized as a proposition below.

PROPOSITION 2: Suppose that there are only two risky assets. Assume s1 > s2 ≥ 0, and

ρ12 ∈ [ρ
12
, ρ̄12] which is a subinterval of [−1, 1]. Depending on the values of ρ

12
and ρ̄12, the

3If further the condition s1 = s2 holds along with ρ12 = 1, the two assets are completely substitutable in
both risk and risk-return tradeoff. The optimal portfolio is arbitrary as long as it satisfies φ∗1/σ1 + φ∗2/σ2 =
s1/A.
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optimal portfolio under correlation ambiguity is given by

φ∗ =


( µ1
Aσ2

1
, 0)>, if ρ

12
< s2

s1
< ρ̄12,

1
A

Σ−1(ρ̄12)µ, if ρ̄12 <
s2
s1
,

1
A

Σ−1(ρ
12

)µ, if ρ
12
> s2

s1
,

(10)

where Σ−1(ρ̄12) and Σ−1(ρ
12

) are the inverse matrices of Σ with ρ12 replaced by ρ̄12 and ρ
12

respectively.

We have shown that anti-diversification may occur under correlation ambiguity by Propo-

sition 1 and Proposition 2. We next discuss more features of the optimal portfolio choice

under correlation ambiguity.

One might expect that the aversion to correlation ambiguity leads to an optimal portfolio

with more risk-free asset holding than the standard mean-variance portfolio. It turns out

that this is not generally true. The following numerical example illustrates that the total

allocation on risky assets may be increased under ambiguous correlations. Therefore, the

allocation on the risk-free asset may be lower under the aversion to correlation ambiguity.

Example 1: Suppose µ = (0.3, 0.5)>, σ = diag(0.4, 0.8). Then s = (0.75, 0.625)>. Assume

ρ12 = 0.82 and its ambiguous set [0.6, 0.85]. Let the risk aversion A be 1. Then the optimal

portfolio under the ambiguity is φ∗ = (1.8750, 0)>, while the optimal portfolio without the

ambiguity is (1.8124, 0.0382)>.

It follows that the total risky position (1.8506) of the latter portfolio is less than 1.8750,

the total risky position of the optimal portfolio under the ambiguity. The intuitive reason

for the result is that by (8), without the ambiguity we can adjust β (or ρ) to make the two

risky positions small, while the positions under the ambiguity really depend on the ambiguity

level, and they may be large.

Define the relative absolute weight
‖φ∗1‖

‖φ∗1|+‖φ∗2‖
of asset 1 in the optimal portfolio. For the

anti-diversification case, this weight is 1, greater than the weight of asset 1 in the mean-
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variance portfolio. In general, we define the function of the relative absolute weight as

follows.

F (ρ12) =
1
σ1

(s1 − ρ12s2)
1
σ1

(s1 − ρ12s2) + 1
σ2
|s2 − ρ12s1|

.

Then

dF (ρ12)

dρ12

=


1

(...)2
σ1
σ2

(s2
1 − s2

2) > 0, for ρ12 < s2/s1,

1
(...)2

σ1
σ2

(s2
2 − s2

1) < 0, for ρ12 > s2/s1.

Therefore, for all cases the relative absolute weight of asset 1 in the optimal portfolio is greater

than that in the mean-variance portfolio, which equals F (ρ̂12) for some ρ̂12 ∈ [ρ
12
, ρ̄12].

Hence, in the sense of the relative absolute weight, the optimal portfolio under correla-

tion ambiguity biases toward asset 1, and the portfolio is less “balanced” compared to the

mean-variance portfolio.

III. Anti-Diversification

In this section, we show that, correlations with sufficient ambiguity lead to anti-diversification

in the sense that the optimal portfolio consists of exactly one risky assets, even though there

are N > 1 risky assets available. A sufficient and necessary condition for occurrence of

anti-diversification is presented.

We index the risky asset with the greatest Sharpe ratio as asset 1 as before. The optimal

portfolio with aversion to correlation ambiguity should produce a value function not less

than the portfolio of investing only any one of the risky assets. If only investing asset i, the

optimal portfolio is 1
A
µi
σ2
i

and the value function is 1
2A
s2
i . So the optimal value function J

satisfies J ≥ 1
2A
s2
i , i = 1, 2, ...N. Thus, we have J ≥ 1

2A
maxi s

2
i = 1

2A
s2

1. That is, investing

in asset 1 reaches the lower bound of the value function and no other asset can be optimal.
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We write this result and its consequence as a proposition below.

PROPOSITION 3: Suppose s1 > max{s2, ..., sN} ≥ 0. Then the value function is greater

than or equal to 1
2A
s2

1. When anti-diversification occurs, only the risky asset with the greatest

Sharpe ratio among all available risky assets is held.

To study the N risky assets case, let us consider the following change of variables.

ϕ1 = φ1 + β2φ2 + ...+ βNφN ,

ϕi = φi, i = 2, 3, ..., N.

In matrix notation, we can write

ϕ =

 1 β>

0 IN−1

φ, (11)

with ϕ = (ϕ1, ..., ϕN)>, φ = (φ1, ..., φN)>, β = (β2, ..., βN)>, and for each i = 2, ..., N ,

βi =
ρ1iσi
σ1

is the beta coefficient of regression (in population) coefficient of ri on r1.

We can express Σ matrix in the following block-diagonal form

Σ =

 σ2
1 σ2

1β
>

βσ2
1 Σ⊥


where Σ⊥ is the (N − 1) × (N − 1) variance-covariance matrix for assets 2, . . ., N . Note

that  1 0

−β IN−1


 σ2

1 β>σ2
1

βσ2
1 Σ⊥


 1 −β>

0 IN−1

 =

 σ2
1 0

0 Σ⊥ − σ2
1ββ

>

 . (12)
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We then have

φ>Σφ = ϕ2
1σ

2
1 + ϕ̂>(Σ⊥ − σ2

1ββ
>)ϕ̂,

where ϕ̂ = (ϕ2, ..., ϕN)>, and

µ>φ = (µ1, µ̂
> − β>µ1)ϕ,

where µ̂ = (µ2, ..., µN)>. Thus, the agent’s objective function without ambiguity becomes

max
φ

µ>φ− A

2
φ>Σφ = max

ϕ
µ1ϕ1 −

A

2
σ2

1ϕ
2
1 + (µ̂− βµ1)>ϕ̂− A

2
ϕ̂>(Σ⊥ − σ2

1ββ
>)ϕ̂,

and the maximizer can be separated into two components as follow

ϕ∗1 =
µ1

Aσ2
1

and ϕ̂∗ =
1

A
(Σ⊥ − σ2

1ββ
>)−1α, (13)

where

α = µ̂− βµ1.

Note that we use the same notations of α and β as in Section II because they are identical

when N = 2.

Next, by the relation (11), we have

φ∗1 +
N∑
n=2

βnφ
∗
n =

µ1

Aσ2
1

and

(φ∗2, ..., φ
∗
N)> =

1

A
(Σ⊥ − σ2

1ββ
>)−1α.

Therefore,

max
φ

µ>φ− A

2
φ>Σφ =

1

2A
(
µ2

1

σ2
1

+ α>(Σ⊥ − σ2
1ββ

>)−1α),
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Then the objective function with aversion to correlation ambiguity becomes

min
ρ

1

2A

(
µ2

1

σ2
1

+ α>(Σ⊥ − σ2
1ββ

>)−1α

)
, (14)

which is the N risky assets version of (9).

From (14), because (Σ⊥−σ2
1ββ

>)−1 is positive definite, 1
2A

µ21
σ2
1

is the minimum if and only

if α = 0. In this case, the optimal portfolio has only one risky asset which is asset 1 and we

have anti-diversification.

Note that α = 0 is equivalent to ρ∗1i = si
s1
, i = 2, ..., N . This is just the N -dimensional

extension of the 2 risky asset case we study in Section II. The intuition for this condition is

the same as given for the case of N = 2.

Note that ρ1i, i = 2, ..., N , can be independently specified, as long as |ρ1i| < 1. 4 However,

after ρ1i, i = 2, ..., N , are given, {ρij}2≤i<j can not be specified independently. They have to

satisfy additional constraints for ρ to be positive definite. For example, when N = 3, ρ12 and

ρ13 can be independently specified to take any value between -1 and 1. But given ρ12 and

ρ13, we can no longer specify ρ23 to take any value between -1 and 1, due to the constraint

(4).

The above analysis yields that the condition α = 0 is a sufficient and necessary condition

for occurrence of anti-diversification if ρ∗1i = si/s1 is admissible.

PROPOSITION 4: Anti-diversification occurs if and only if ρ∗1i = si/s1, i = 2, ..., N , is ad-

missible.

An alternative way to understand this proposition is as follows. The decomposition (14)

implies that we can construct two groups of assets: one denoted by X consisting of asset 1

4This is because for any values of ρ1i, i = 2, ..., N , we can find values between -1 and 1 for other ρij , such
that ρ is positive definite. For example, we can let ρij = ρ1iρ1j , for 1 < i 6= j ≤ N , then the correlation
matrix ρ is positive definite for any values of ρ1i, ρ1j between -1 and 1.
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only, another group denoted by Y with return vector

(−β, IN−1)(r1, r2, ..., rN)> = (r2 − β2r1, ..., rN − βNr1)>.

Y has expected return vector

(−β, IN−1)µ = µ̂− βµ1 = α

and variance-covariance matrix

(−β, IN−1)>Σ(−β, IN−1) = Σ⊥ − σ2
1ββ

>.

One can check that X is uncorrelated with each member of Y , and hence uncorrected with

any portfolio over Y . When correlations are ambiguous and the agent is averse to ambigu-

ity, he will consider the worst case in which the second term of (14) is minimized over the

ambiguous sets of correlations. The value function is the sum of the squared Sharpe ratio of

X and the optimal Sharpe ratio of Y divided by 2A. Only the latter Sharpe ratio contains

ρ; in the worst scenario (α = 0) this Sharpe ratio is zero and asset 2, ..., N , are not held.

Note that α depends on ρ1n only, not on all ρij’s. Hence, it induces anti-diversification that

α = 0, given ρ∗1i = si/s1, i = 2, ..., N, is admissible.

When anti-diversification occurs, only asset 1 with the greatest Sharpe ratio is held. Any

portfolio formed with the rest of the risky assets should have a lower Sharpe ratio than asset

1. Here is an example for the three risky assets case. When anti-diversification occurs, by

Proposition 4, it holds that ρ∗12 = s2/s1, ρ
∗
13 = s3/s1, and the correlation matrix shall be

positive definite. Substituting ρ12 = ρ∗12, ρ13 = ρ∗13 into (4), it follows that

s2
2 + s2

3 − 2ρ23s2s3 < (1− ρ2
23)s2

1. (15)
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Meanwhile, note that the Sharpe ratio of the optimal portfolio formed by using asset 2 and

3 is

(s2, s3)

 1 ρ23

ρ23 1


−1 s2

s3

 =
s2

2 + s2
3 − 2ρ23s2s3

1− ρ2
23

.

This is smaller than s1 if and only if

s2
2 + s2

3 − 2ρ23s2s3 < (1− ρ2
23)s2

1,

which is the same as (15). So any portfolio of asset 2 and asset 3 has a lower Sharpe ratio

than asset 1 when anti-diversification occurs. However, the converse is not true. One may

consider a case without correlation ambiguity.

When ρ∗1i = si/s1, i = 2, ..., N , and ρ∗ij = sisj/s
2
1, 1 < i < j ≤ N , the correlation matrix

ρ∗ = (ρ∗ij) is positive definite. This gives us a simple sufficient condition for occurrence of

anti-diversification by Proposition 4.

PROPOSITION 5: If si/s1 is contained in the ambiguous sets of ρ1i for i = 2, ..., N , and

sisj/s
2
1 is contained in the ambiguous sets of ρij for 1 < i < j ≤ N , anti-diversification

occurs.

The sufficient condition in Proposition 5 is automatically satisfied when the correlations

are completely ambiguous, that is, the ambiguous sets are [−1, 1]. Hence we obtain a general

result for the case of N risky assets, in a line with Proposition 1, where only two risky assets

are assumed.

COROLLARY 1: Assume s1 > max{s2, s3, ..., sN} ≥ 0. If the correlations are completely

ambiguous, that is, the ambiguous set for each correlation coefficient ρij is [−1, 1], then the

agent will hold asset 1 only.

When anti-diversification occurs, only the asset with the greatest Sharpe ratio will be
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held. However, when anti-diversification does not occur, this asset may not be even held in

the optimal portfolio while the one with the smallest Sharpe ratio may be held, depending

on correlations and their ambiguous levels. The reason is that other assets except asset 1

may combine to achieve a higher Sharpe ratio than asset 1.

Under the mean-variance expected utility, the portfolio is given by φ∗ = 1
A

Σ−1µ. The

probability of φ∗i = 0 for some i is zero. Alternatively, if Σ is non-singular, then each asset i

has an independent risk and an risk premium αi associated with the risk. Holding of asset

i is zero if αi is zero. Obviously, αi = 0 is a zero probability event in a space of all possible

αi. Thus, under the expected utility, all available risky assets will be held and there is

exactly diversification. In contrast, under aversion to correlation ambiguity, minimizing over

ρ identifies αi = 0. In this case, αi = 0 and anti-diversification occurs for sure.

It seems that the optimal portfolio containing only one risky asset is riskier than the

standard mean-variance portfolio which contains all risky assets. For example, suppose

s1 > si, i = 2, ..., N and µ1
σ2
1

= ... = µN
σ2
N

. Then the optimal portfolio under correlation

ambiguity is given by φ∗ = µ1
Aσ2

1
(1, 0, ..., 0)> while note that under the expected utility, the

optimal portfolio is given by φ∗MV = 1
A

(µ1
σ2
1
, ..., µN

σ2
N

)> = µ1
Aσ2

1
(1, 1, ..., 1)>, assuming ρ = IN . A

portfolio with φ∗ = 1
A
µ1
σ2
1
(1, 0, ..., 0) seems to be much more “imbalanced” thus riskier than a

portfolio with φ∗MV = 1
A
µ1
σ2
1
(1, ..., 1)>. However, the variance of the portfolio φ∗ is

(φ∗)>Σφ∗ =
1

A2
s2

1

while the variance of the mean-variance portfolio φ∗MV is

(φ∗MV )>Σφ∗MV =
1

A2

∑
i

s2
i >

1

A2
s2

1.

Thus, the portfolio φ∗ actually has a lower variance and thus is less risky. In this example,

we assume ρ = IN to get the mean-variance portfolio. In fact, for any admissible ρ, the same
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conclusion holds. Note φ∗ = 1
A
σ−1ρ−1s and

min
ρ

max
φ

φ>µ− A

2
φ>Σφ =

1

2A
min
ρ
s>ρ−1s =

A

2
min
ρ

(φ∗)>σρσφ∗.

The term (φ∗)>σρσφ∗ is in deed the variance of the return regarding portfolio φ∗. Hence

the optimal portfolio under the ambiguity has the minimum variance among all portfolios

in the form 1
c
σ−1ρ−1s for any non-zero constant scale c. In this sense, the optimal portfolio

under the ambiguity aversion is more conservative and the optimal portfolio is less risky than

the standard mean-variance portfolio.

Goldman (1979) shows that in an infinite time horizon, buy-and-hold strategy will result

in anti-diversification. In his paper, the asset with the highest risk and risk aversion adjusted

expected return will be held. In our paper, it is the asset with the highest Sharpe ratio.

IV. Underdiversification

In this section, we show that the optimal portfolio with aversion to correlation ambiguity

typically does not contain all available risky assets. Thus we have under-diversification. As

a calibration exercise, with 100 stocks randomly drawn from S&P500 stocks, approximately

80 stocks will not be held in the optimal portfolio, if the correlations can take any values

within 95% confidence intervals.

We first study conditions under which an asset is not held. For convenience, we use asset

N as an example. We write the variance-covariance matrix in a form of blocks as follows.

Σ =

 Σ̃⊥ σ2
N β̃

σ2
N β̃
> σ2

N

 ,
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where Σ̃⊥ is the (N − 1)× (N − 1) variance-covariance matrix of asset 1,..., asset N − 1, and

β̃ = (ρ1N

σ1

σN
, ..., ρN−1,N

σN−1

σN
)>.

Note that β̃ is the population regression coefficient of rN on (r1, ..., rN−1).

Define

α̃N = µN − σ2
N µ̃
>(Σ̃⊥)−1β̃, σ̃2

N = σ2
N − σ4

N β̃
>(Σ̃⊥)−1β̃, (16)

where µ̃ = (µ1, ...., µN−1)>. Note that α̃N is treated as a function of Σ̃⊥ and β̃, which take

values from the ambiguous sets of {ρij}1≤i<j<N and {ρiN}1≤i<N respectively.

The following proposition presents a necessary condition and a sufficient condition for

asset N not held.

PROPOSITION 6: Asset N is not held in the optimal portfolio under correlation ambiguity

only if minβ̃ α̃
2
N/σ̃

2
N = 0. If for all Σ̃⊥, α̃N = 0, then asset N is not held.

Proof. Note that the objective function can be written as follows.

1

2A
min
ρ

(
α̃2
N

σ̃2
N

+ µ̃>(Σ̃⊥)−1µ̃

)
=

1

2A
min
Σ̃⊥

(
min
β̃

(
α̃2
N

σ̃2
N

) + µ̃>(Σ̃⊥)−1µ̃

)
. (17)

So if asset N is not held, we must have minβ̃ α̃
2
N/σ̃

2
N = 0. Conversely, if α̃N = 0 holds for all

Σ̃⊥, there is no reason to hold asset N which has an zero Sharpe ratio in the worst case. �.

As an example of N = 2, α̃2 = µ2− σ2
σ1
ρ12µ1, σ̃2

2 = σ2
2(1−ρ2

12), and Σ̃⊥ is the constant σ2
1.

The condition α̃2 = 0 becomes a sufficient and necessary condition for not holding of asset

2. It turns out that the condition reduces to Proposition 2 of the case of two risky assets.

Note that α̃N is an analog of α defined in the preceding sections, and the condition

α̃N = 0 is an analog of α = 0 condition. The above proposition provides a necessary and a

sufficient condition for not holding of an asset. In the following proposition, we prove that

as one of correlations of asset N approaches to 1, α̃N goes to zero. Then by Proposition
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6, an risky asset with one large correlation is not likely held in the optimal portfolio under

correlation ambiguity. Note that for any asset i, we can define α̃i and σ̃i by a similar way of

(16).

PROPOSITION 7: For any one of correlations ρiN , i = 1, ..., N − 1, we have α̃N → 0 and

α̃i → 0 as ρiN → 1. Furthermore, if a pair of risky assets have a sufficiently large correlation,

then one of the risky assets is not held in the optimal portfolio.

We leave the proof in the appendix. Intuitively, as the correlation of a pair of risky assets

is close to 1, the two assets shall have very close Sharpe ratios in order to avoid arbitrage.

As a result, the ratio of their Sharpe ratios must be very close to 1, hence more likely falls

in the ambiguous set of the correlation. By Proposition 2 of the two assets case, one of the

pair will not be held.

We note that α̃N = 0 is not easy to check. Instead, the following result is useful in empiri-

cal calibration exercises, relating our problem to vast literature of semi-definite programming

in operations research.

PROPOSITION 8: The optimal portfolio under correlation ambiguity is given by

φ∗ =
1

A
σ−1(ρ∗)−1s,

where ρ∗ is given by

ρ∗ = arg min
ρ
s>ρ−1s. (18)

Proposition 8 is actually from (3). We list it as a proposition here because it provides us

a quick way to find the optimal portfolio from a large set of risky assets under correlation

ambiguity. Given s, the optimization problem (18) can be transformed to a semi-definite

programming (SDP) problem. This is used in our calibration exercise. It’s worth mentioning

that the positive definite constraint is binding when we solve the problem numerically. We
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leave the detailed transforming steps in the appendix.

The following proposition suggests that under-diversification is associated with interi-

or solutions to the minimization problem. This result also suggests that under-diversified

portfolios may occur quite generally under correlation ambiguity.

PROPOSITION 9: If ρ∗ij ∈ (ρ
ij
, ρ̄ij), then φ∗i = 0 or φ∗j = 0 for 1 ≤ i 6= j ≤ N. In other

words, if an optimal correlation is achieved at an interior point of the ambiguity set, then at

least one of the two corresponding risky assets will not be held.

We leave the proof in the appendix. The intuition behind the proposition is that if

changing ρij does not affect the utility then φ∗iφ
∗
j must be zero, as the product is the coefficient

of ρ∗ij in the optimal utility function.

A direct consequence of the above proposition is anti-diversification: If all correlations

are completely ambiguous (ρ
ij

= −1, ρ̄ij = 1 for all i, j = 1, 2, ..., N), then at most one φi is

not zero, hence only one asset will be held and anti-diversification occurs. By Proposition

3, the risky asset with the greatest Sharpe ratio is held.

In our empirical calibration exercise, the optimal portfolio under correlation ambiguity

is under-diversified even when we replace confidence intervals by a sphere or an ellipsoidal

set as the ambiguity set of correlations. In contrast, under the expected return ambiguity,

there is no under-diversification for an ellipsoidal or a sphere ambiguity set. This can be

seen from the case of two risky assets discussed in the Internet Appendix of this paper, or

from Proposition 2, Garlappi, et al. (2007). In fact, under-diversification (holding only part

of risky assets) shown in Boyle, et al. (2012) may not occur if the ellipsoidal ambiguous set

{µ : (µ− µ̂)>Σ−1(µ− µ̂) < δ} is used as the range of expected returns there.

A. Empirical Calibration

We calibrate our model using U.S. stock market data and study the optimal portfolio

under correlation ambiguity. We use the monthly data of S&P 500 adjusted for dividends.
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The data set spans from January, 1993 to December, 2012, for a total of 240 months. After

filtering out those with incomplete data, there are 319 stocks that remain for our study.

Then, we compute mean excess returns, variances and correlations of the excess returns of

these stocks, using average monthly LIBOR as the riskless returns.

The brief statistical information regarding the data are reported in Table 1. Of a total

of 50721 (319× 318/2) estimated correlations, 0.19% have a p-value greater than 5%; hence,

most of the correlations are significant. The maximum of correlations is 0.8365, and the

minimum is -0.6385. Neither is close to the singular value −1 or 1. The average length

of 95% confidence intervals is 0.2357. The length rises to 0.3088 when 99% confidence

intervals are adopted. Hence, a higher confidence interval level corresponds to a higher level

of ambiguity. As is standard in the literature, confidence intervals are used as ambiguous

sets of correlations.

Empirical studies document that investors usually hold much less risky assets than they

could have. For example, Campbell (2006) suggests that the financial portfolios of house-

holds contain only a few assets. Goetzmann and Kumar (2008) report that the majority

of individual investors hold a single digit number of assets in a sample data set during

1991-1996.

In preceding sections, we have shown that aversion to correlation ambiguity can generate

under-diversification. To quantitatively study the phenomenon of under-diversification, we

randomly choose a sample group of stocks from the S&P 500 stocks for N = 10, 20, ..., 100,

and then we compute the optimal portfolio from this chosen group under ambiguous cor-

relations for investors with ambiguity aversion. The ambiguous intervals of the estimated

correlations are given by different levels of confidence subject to the positive definite con-

straint. We repeat this procedure 100 times, and obtain 100 optimal portfolios. The average

number of stocks in the optimal portfolios for each N is considered to be the typical size of

the investors’ optimal portfolios when they encounter N available stocks.

The result is reported in Figure 1. When there are 100 stocks, optimal portfolios consist
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of 22 stocks, on average, given the 95% confidence intervals as the ambiguous sets of the

correlations. Moreover, optimal portfolios consist of approximately 18 and 24 stocks when

investors select from the 100 stocks and use 90% and 99% confidence intervals, respective-

ly, for the ambiguity of the correlations. Hence an aversion to correlation ambiguity may

generate under-diversification, which is documented in the empirical studies.

We let the risk aversion A = 1 in our empirical tests. It is important to note that the

risk aversion solely affects the magnitude of risky positions by a manner of scaling; it does

not change the choices of risky assets in the optimal portfolio under correlation ambiguity.

In fact, we may obtain a corollary from Proposition 9 as follows.

COROLLARY 2: The set of risky assets in the optimal portfolio under correlation ambiguity

is independent of the risk aversion.

Proof. By Proposition 9, we observe that whether asset i has zero positions depends on

whether ρ∗ij falls into the ambiguous set; this, in addition to the objective function in (18),

is independent of the risk aversion A. �

Next, we focus on a randomly selected sample of 100 stocks. The results are reported in

Table II. When the 95% confidence intervals are used as the ambiguous sets for the correla-

tions, we obtain an optimal portfolio that consists of 20 stocks from these 100 candidates.

The maximum, minimum and average of the Sharpe ratios of the (held) stocks in the optimal

portfolio are 0.1674, -0.0489, and 0.0859, respectively, whereas the corresponding quantities

are 0.1153, -0.0064, and 0.0600, respectively, for the (not-held) stocks with zero positions in

the optimal portfolio. The former group has a higher average Sharpe ratio than the latter.

The distributions of the Sharpe ratios in the optimal portfolio and in the entire sample are

presented in Figure 2. Note that the stock with the greatest ratio is held, but not all the

held stocks have top Sharpe ratios. Point estimations of correlations that determine the

positions of ambiguity sets, and ambiguity levels that determine the size of ambiguity sets,

matter here as well as Sharpe ratios.
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By Proposition 2, a stock will not be held in the optimal portfolio if the ratio of its Sharpe

ratio to the maximal Sharpe ratio falls into the ambiguous interval of the correlation. Given

the average correlation of 0.2220, and the maximal Sharpe ratio of 0.1674, we can expect

that stocks with a Sharpe ratio of approximate 0.0372(= 0.2220 × 0.1674) tend not to be

held. This analysis is confirmed by Figure 2, which shows that all stocks with Sharpe ratios

near the point 0.03 are not held.

When the level of ambiguity is greater, the average Sharpe ratio in the optimal portfolio

is higher. This finding suggests that the stocks with low Sharpe ratios are more likely to be

eliminated from the optimal portfolio as the ambiguity level increases, until the one with the

greatest Sharpe ratio remains.

In Figure 3, we compare the optimal portfolio with the standard mean-variance portfolio

constructed from the sample moments. Table III lists the exact values of the non-zero

positions in the optimal portfolio and the corresponding positions in the mean variance

portfolio. The extreme (very positive large or very negative small) positions in the mean-

variance portfolio are significantly reduced in the optimal portfolio under the ambiguity. For

example, the largest position 6.1355 in the corresponding mean-variance portfolio is reduced

to 0.1604 in the optimal portfolio, and the smallest -2.5868 is reduced to -0.0483.

The reason that the extreme allocations are largely reduced in the optimal portfolio

under the ambiguity can be inferred from Figure 4. This figure plots the distributions of

correlations of all 100 stocks, as well as those stocks in the optimal portfolio. As suggested by

Proposition 7, many stocks with large correlations are eliminated from the optimal portfolio.

Hence the stocks in the optimal portfolio tend to have small correlations. Consequently,

extreme positions are generated with less possibility when the correlations are closer to zero,

and the optimal portfolio under correlation ambiguity likely has less extreme positions than

the mean-variance portfolio.

Extreme positions are considered to be one of major reasons that cause poor out-of-
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sample performance.5 The aversion to correlation ambiguity can reduce extreme positions,

and hence, may improve the performance of optimal portfolios under correlation ambiguity.

In fact, in out-of-sample tests for various data sets not reported in this paper, the aversion to

correlation ambiguity generates portfolios with a more stable and higher Sharpe ratio than

the mean-variance portfolios. These findings regarding performance are similar to Garlappi,

et al. (2007); they study portfolio choice with aversion to expected return ambiguity.

However, here, by examining extreme positions, we provide one potential reason for why

the performance of optimal portfolios under correlation ambiguity can be better than the

mean-variance portfolios.

V. Conclusions

In this paper, we study optimal portfolios for an agent who is averse to correlation

ambiguity. We prove that anti-diversification (the optimal portfolio has only one risky asset)

occurs when correlations are sufficiently ambiguous. Generally, we have under-diversification

in the sense that optimal portfolios contain only part of available risky assets. Given the

plausible levels of ambiguity, the optimal portfolio contains approximately 20 stocks in a case

with randomly-selected 100 stocks from S&P 500. Thus, correlation ambiguity may provide

an explanation for under-diversification documented in the literature.

Anti-diversification or under-diversification implies that the optimal portfolios are less

diversified and less “balanced”. Furthermore, less risk-less assets may be held in the optimal

portfolio than in the mean-variance portfolio. Thus one may be tempted to conclude that

the optimal portfolio is riskier. In fact, the optimal portfolio is less risky because it has

less variance. In addition, the optimal portfolio has less “extreme” positions because risky

assets with high correlations are more likely to be omitted from the optimal portfolio under

correlation ambiguity.

5For example, Jagannathan (2002) and DeMiguel et al (2009) show out-of sample performance can be
improved by constraining the weights(hence, reducing extreme positions) in optimal portfolios.
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Appendix A. Proof of Propositions

Proof of Proposition 7:

For notional continence and without loss of generality, we use the pair of asset 1 and asset

2 as an example. Asset 1 is not assumed to have the greatest Sharpe ratio among all risky

assets in this proof. Note that α̃1 is defined accordingly as follows.

α̃1 = µ1 − σ2
1µ̂
>(Σ⊥)−1β, σ̃2

1 = σ2
1 − σ4

1β
>(Σ⊥)−1β,

where µ̂ = (µ2, ...., µN)>, Σ⊥ and β are defined the same as in Section III. We need to prove

that as ρ12 goes to 1, α̃1 goes to zero. Write ρ in a form of blocks as follows.

ρ =


1 ρ12 ρ̂>13

ρ12 1 ρ̂>23

ρ̂13 ρ̂23 ρ̂3

 (A1)

where ρ̂13 = (ρ13, ..., ρ1N)>, ρ̂23 = (ρ23, ..., ρ2N)>, ρ̂3 is a (N − 2)× (N − 2) matrix.

Denote

ρ̂2 =

 1 ρ̂>23

ρ̂23 ρ3

 ,

with inverse

ρ̂−1
2 =

 (1 + ρ̂>23(ρ̂3 − ρ̂23ρ̂23)−1ρ̂23) −ρ̂>23(ρ̂3 − ρ̂23ρ̂
>
23)−1

−(ρ̂3 − ρ̂23ρ̂
>
23)−1ρ̂23 (ρ̂3 − ρ̂23ρ̂

>
23)−1

 .
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Denote ŝ3 = [s3, ..., sN ]>. Then

α̃1 = σ1

(
s1 − (s2, ŝ

>
3 )ρ̂−1

2 (ρ12, ρ̂
>
13)>

)
= σ1s1 − σ1(s2, ŝ

>
3 )

 ρ12 + (ρ̂13 − ρ12ρ̂23)>(ρ̂3 − ρ̂23ρ̂
>
23)−1ρ̂23

(ρ̂3 − ρ̂23ρ̂
>
23)−1(ρ̂13 − ρ12ρ̂23)

 .

Note that as ρ12 goes to 1, ρ13 should go to ρ23. Furthermore, s1 → s2 as ρ12 → 1 because

there is no arbitrage. Hence

lim
ρ12→1

α̃1 = 0.

Moreover, similarly we find that

σ̃2
1 = σ2

1 − σ2
1(ρ12, ρ̂13)>

 ρ12 + (ρ̂13 − ρ12ρ̂23)>(ρ̂3 − ρ̂23ρ̂
>
23)−1ρ̂23

(ρ̂3 − ρ̂23ρ̂
>
23)−1(ρ̂13 − ρ12ρ̂23)

 .

Then applying L’Hospital’s rule in limiting, we can prove that

lim
ρ12→1

α̃2
1

σ̃2
1

= 0.

Since limρ12→1 α̃
2
1/σ̃

2
2 = 0, we can find a sufficiently large ρ12, such that α̃2

1/σ̃
2
2 is close to

zero so that minβ α̃
2
1/σ̃

2
2 = 0. Note that we do not assume asset 1 has the greatest Sharpe

ratio in this proof; the similar results are applied to asset 2 as well. We have limρ12→1 α̃2 = 0,

limρ12→1 α̃
2
2/σ̃

2
2 = 0, and when ρ12 is sufficiently large, minβ α̃

2
2/σ̃

2
2 = 0. This yields that

for a sufficiently large ρ12, one of the two risky assets is not held in the optimal portfolio,

according to Proposition 6. �
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Proof of Proposition 8 and 9:

Exploiting the variable transformation ψ = σφ and the minimax theorem, we obtain

J = max
ψ

min
ρij∈[ρ

ij
,ρ̄ij ]

s>ψ − A

2
ψ>ρψ = min

ρij∈[ρ
ij
,ρ̄ij ]

max
ψ

s>ψ − A

2
ψ>ρψ.

It is trivial to solve the inner maximization problem in the right hand side above. We have

ψ∗ = 1
A
ρ−1s, and J = minρ

1
2A
s>ρ−1s. Let f = 1

2A
s>ρ−1s. The first order condition of f

w.r.t. ρij is

∂f

∂ρij
=
−1

2A
s>ρ−1Iijρ

−1s = −A
2

(ψ>Iijψ) = −Aψ∗iψ∗j ,

where Iij is a N × N matrix with all zero entries except 1 at the entry (i, j) and (j, i). If

the minimization is achieved at an interior point of [ρ
ij
, ρ̄ij], then ∂f/∂ρij = 0. As a result,

ψ∗iψ
∗
j = 0. This completes the proof. �

Appendix B. Transforming to SDP

Note that

min
ρ

max
φ

φ>s− A

2
φ>ρφ = min

ρ

1

2A
s>ρ−1s.

We need to solve the minimization problem minρ s
>ρ−1s. This minimization problem is not

a standard semi-definite programming problem yet. We take a transformation as follows.

Consider

(P1) : min s>ρ−1s,

s.t. ρ ∈ [ρ, ρ], ρ > 0,
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where ρ > 0 denotes the positive definite constraint. The problem (P1) can be rewritten as

follows.

(P1′) : min t,

s.t. s>ρ−1s ≤ t, ρ ∈ [ρ, ρ] ρ > 0.

We claim that the constraint s>ρ−1s ≤ t and ρ ≥ 0 is equivalent to

 ρ s

s> t

 ≥ 0 because

 ρ s

s> t

 ≥ 0⇐⇒

 ρ 0

0 t− s>ρ−1s

 ≥ 0.

So, (P1) can be transformed to:

(P2) : min t,

s.t.

 ρ s

s> t

 ≥ 0, ρ ∈ [ρ, ρ], ρ > 0.

(P2) is a standard SDP problem.

Semidefinite programming (SDP) is a subfield of convex optimization for a linear objec-

tive function over the intersection of the cone of positive semidefinite matrices with an affine

space. SDP is a special case of cone programming and can be solved by interior point meth-

ods. There are many free codes available in various programming languages, for example, C,

C++, Matlab, Python. In the paper, we use Yalmip toolbox6 with DSDP solver, developed

by Steve Benson, Yinyu Ye, and Xiong Zhang. For a complete description of the algorithm

and a proof of convergence of DSDP, see “Solving Large-Scale Sparse Semidefinite Programs

for Combinatorial Optimization”, SIAM Journal on Optimization, 10(2), 2000, pp. 443-461.

6The toolbox is available at http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.WhatIsYALMIP
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Figures and Tables
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Figure 1. We randomly choose N stocks from S&P 500, and find the optimal portfolio
under correlation ambiguity for these N stocks. The ambiguous sets are given by the 90%,
95%, and 99% confidence intervals respectively. We repeat the procedure 100 times, average
number of stocks in optimal portfolios for each N and for each ambiguous level is calculated
and reported in the figure. The X-axis denotes number of available stocks (N) varying from
10 to 100. The Y -axis denotes average number of stocks in optimal portfolios.
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Sharpe ratios

Figure 2. This figure shows the distributions of Sharpe ratios in the entire sample of
randomly-selected 100 stocks, as well as in the optimal portfolio. Although many stocks
with low Sharpe ratios are not held in the optimal portfolio, a few stocks with low Sharpe
ratios are still held. Correlations and their ambiguous levels matter as well as Sharpe ratios.
By Proposition 2, roughly speaking, a stock will not be held in the optimal portfolio if the
ratio of its Sharpe ratio to the maximal Sharpe ratio falls into the ambiguous interval of
the correlation. Hence given the average correlation of 0.2220 and the maximal Sharpe ratio
of 0.1674, stocks with a Sharpe ratio of approximate 0.0372(= 0.222 × 0.1674) should tend
not to be held. This analysis is consistent with the figure, which shows that stocks with a
Sharpe ratio near 0.03 are not held.
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Figure 3. The magnitude of large positions are reduced greatly in the optimal portfolio
compared with the mean-variance portfolio based on the estimation ρ̂. A total of 100 stocks
are in the sample. Every integer on the X-axis represents a stock. The Y-axis denotes
allocations on stocks. The risk aversion coefficient is A = 1. The extreme positions in the
mean-variance portfolio are significantly reduced in the optimal portfolio. Consequently, the
optimal portfolio has less variance and is more conservative than the mean-variance portfolio
in this sense.
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Figure 4. This figure shows the distributions of the correlations of all 100 stocks, as well
as the stocks in the optimal portfolio. There are a total of 4950(= 100× 99/2) correlations
in the top panel, whereas there are 190 (= 20 × 19/2) correlations in the bottom panel.
The top correlation as well as many high correlations disappear in the optimal portfolio.
Consequently, less extreme positions are found in the optimal portfolio.
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Table I. Statistics of Correlations, Mean, and Sharpe Ratios of Excess Returns

level correlations length of C.I.
of C.I. mean std max min mean std max min
99% 0.2369 0.1266 0.8365 -0.6385 0.3088 0.0227 0.3322 0.1016
95% 0.2357 0.0175 0.2537 0.0770
90% 0.1980 0.0148 0.2133 0.0645

excess returns Sharpe ratios
mean std max min mean std max min
0.0051 0.0042 0.0173 -0.009 0.060 0.0443 0.1829 -0.0762

The total number of stocks is 319. The percentage of p-values greater than 0.05 is 0.18%.
Hence most correlations are significant. Average monthly LIBOR is used as the riskless
returns.

Table II. Comparison of Sharpe Ratios between Held and Not-held Stocks

level of C.I. 95% 99%
Held Not-held Held Not-held

Number of Stocks 20 80 16 84
max. Sharpe 0.1674 0.1153 0.1674 0.1125
min. Sharpe -0.0489 -0.0064 -0.0489 -0.0129
ave. Sharpe 0.0859 0.0600 0.0954 0.0594

The table lists the results for 100 randomly selected stocks (with average correlation of
0.2220). The numbers of stocks held in the optimal portfolios are 20 and 16, and the
numbers of stocks not-held are 80 and 84, respectively, for two levels of ambiguity. At each
level of ambiguity, average Sharpe ratios are reported in the table, as well as the maximum
and minimum of Sharpe ratios. Basically, held stocks have higher Sharpe ratios on average
than not-held stocks.
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Table III. Comparison of Non-zero Positions

OP -0.2776 -0.2288 0.3792 0.2185 0.1289 0.0964 0.0584 -0.1040 -0.0483 0.0013
0.1986 -0.0175 0.4063 0.1604 1.0580 0.8835 0.3129 0.5768 0.1715 0.0252

MV -0.5354 -1.1119 0.8954 2.1356 2.7047 1.4276 0.3582 -1.3984 -2.5868 0.4069
2.0538 -1.3190 3.7618 6.1355 0.7032 5.1949 3.3031 1.4833 -0.0082 0.8841

“OP” represents the optimal portfolio under correlation ambiguity. “MV” represents the
corresponding positions in the mean-variance portfolio. As shown in the table, the extreme
positions (in bold fonts) in the MV are significantly reduced in the optimal portfolio under
correlation ambiguity. The risk aversion A is 1.
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